Schlagwort: Graph Data Science

  • Neo4j stellt Graph Machine Learning für Unternehmen vor

    Neo4j stellt Graph Machine Learning für Unternehmen vor

    Neo4j for Graph Data Science 1.4 ermöglicht den Einsatz von graph-nativen Machine Learning-Verfahren

    München, 20. Oktober 2020 – Neo4j, führender Anbieter von Graphtechnologie, kündigt Neo4j for Graph Data Science 1.4 an. Die aktuelle Version des Frameworks ermöglicht Graph Embeddings und lässt Unternehmen graphbasierte Machine Learning-Verfahren in Kombination mit Deep Learning und Graph Convolutional Neural Networks (CNN oder ConvNet) einsetzen.

    Graph Embedding ist ein Ansatz innerhalb der Graphtechnologie, um komplexe Graphstrukturen zu abstrahieren und sie in ihrer Dimensionalität zu reduzieren. Dabei wird das umgebende Netzwerk für jedes einzelne Datenelement innerhalb eines Graphen berechnet, um Vorhersagen auf Basis von Machine Learning-Verfahren zu optimieren. Graph Embedding Algorithmen erfassen die Struktur eines Graphen, sodass der Anwender nicht mehr auf vorgegebene Formeln/Templates angewiesen ist, um spezifische Merkmale wie den Centrality-Wert zu berechnen.

    Mit Ausnahme von Google und Facebook nutzen bislang nur wenige Unternehmen Graph Embeddings. Neo4j for Graph Data Science 1.4 stellt diese innovative Technologie allen Unternehmen zur Verfügung, um prädiktive Analysen und Vorhersagen durchzuführen – von der Betrugsaufdeckung über die 360-Grad-Sicht von Kunden oder Patienten bis hin zum Schließen von Lücken in Knowledge Graphen. Damit bietet Neo4j for Graph Data Science 1.4 die erste und einzige graph-native Machine-Learning-Lösung, die für Unternehmen kommerziell verfügbar ist.

    Neo4j for Graph Data Science 1.4 enthält drei neue Graph Embedding-Optionen, die durch Auslesen der Graphtopologie für akkuratere Darstellungen sorgen:

    – node2Vec ist ein bekannter Graph Embedding-Algorithmus, der neuronale Netze verwendet.
    – FastRP ist bis zu 75.000 Mal schneller als node2Vec, bei gleicher Präzision und hoher Skalierbarkeit bei großen Graphen.
    – GraphSAGE ist ein Graph Embedding-Algorithmus und Verfahren für das induktive Lernen der Repräsentation des Aufbaus von Graphen unter der Verwendung von Graph Convolutional Neural Networks. Der Algorithmus passt sich dabei fortwährend den Änderungen des Graphen an.

    Neben Graph Embeddings umfasst die neue Version von Neo4j for Graph Data Science auch allgemeine Machine Learning-Algorithmen, wie den k-nearest neighbors algorithm (k-NN). Dieser Algorithmus wird üblicherweise für Musterklassifikationen genutzt, um die durch Graph Embeddings gewonnenen Erkenntnisse einfacher zu erfassen. Damit können auch Graphstrukturen aus der Ähnlichkeit von disparaten Datenpunkten ermittelt werden.

    Weitere Vorteile:
    – Aufdecken verborgener Erkenntnisse innerhalb der Daten: Graph Embedding Algorithmen erkennen, was in den Daten strukturell bedeutsam ist, indem sie eine Obermenge an Informationen ermitteln, die alle herkömmlichen Graph-Algorithmen liefern würden. Graph Embeddings untersuchen dabei die Topologie und Eigenschaften (Properties) des Graphen exemplarisch und reduzieren ihn anschließend auf seine signifikanten Merkmale für weitere Machine Learning-Verfahren.
    – Mehr als nur Algorithmen: Graph-Algorithmen in Verbindung mit Graph Embeddings können die Struktur eines Graphen anhand seiner Topologie und Eigenschaften abstrahieren. Dadurch lassen sich Ergebnisse auf Grundlage der Verbindungen zwischen Datenpunkten – und nicht nur auf der Basis von Rohdaten – vorhersagen.
    – Schnelleres Feature-Engineering: FastRP und Generalized Learning erübrigen das Testen von unterschiedlichen zielgerichteten Algorithmen bei mehrdeutigen prädiktiven Merkmalen.
    – Kontinuierliches Einbinden neuer Daten und Prognosen: Erlernte Funktionen von GraphSage werden in einem neuen Modellkatalog für Machine Learning-Modelle abgespeichert und können jederzeit auf neue Daten angewendet werden – ohne das Modell neu einlernen zu müssen.
    – Mehrwert der Graphdatenbank ausschöpfen: Laufende Bewertungen und Klassifizierungen sowie das prädiktive Aufspüren fehlender Informationen führen zu kontinuierlich optimierten Erkenntnissen.

    „Wir sind sehr stolz darauf, mit Neo4j for Graph Data Science eine Enterprise-Lösung präsentieren zu können, die modernste Graph Analytics mit hoher Benutzerfreundlichkeit verbindet und sich daher für den breiten Einsatz in Unternehmen eignet. Damit ist nun jeder in der Lage, Graph Machine-Learning-Verfahren in vollem Umfang für seine Anwendungen zu nutzen. Was Predictive Analytics angeht, ist das ein echter Meilenstein“, erklärt Alicia Frame, Lead Product Manager und Data Scientist bei Neo4j.

    Weitere Informationen zu Neo4j for Graph Data Science finden Sie auf der Neo4j Website. Die aktuelle Version steht für Sie zum Download bereit.

    Ausführlichere Details zu der Version 1.4 von Neo4j for Graph Data Science erfahren Sie auf der globalen Neo4j Developer Expo & Summit NODES. Vorträge und Demos von der Online-Veranstaltung Neo4j Connections for Graph Data Science finden Sie hier.

    GOV.UK implementierte ihr erstes Machine Learning-Modell auf Basis von Graph Data Science und einem Neo4j Knowledge Graph.

    Neo4j ist der führende Anbieter von Graphtechnologie. Die weltweit am häufigsten eingesetzte Graphdatenbank unterstützt Unternehmen wie Deutsches Zentrum für Diabetesforschung e.V., NASA, UBS und Daimler darin, Zusammenhänge zwischen Menschen, Prozessen, Standorten und Systemen aufzudecken und datengestützte Vorhersagen zu treffen. Der Fokus auf Datenbeziehungen ermöglicht es, smarte Anwendungen zu entwickeln und die Herausforderungen vernetzter Daten zu meistern – von Analytics und künstlicher Intelligenz über Betrugserkennung und Echtzeit-Empfehlungen bis hin zu Knowledge Graphen. Weitere Informationen unter Neo4j.com und @Neo4j.

    Firmenkontakt
    Neo4j
    Sabine Listl
    Prinzregentenstraße 89
    81675 München
    089 41 77 61 16
    neo4j@lucyturpin.com
    http://www.neo4j.com

    Pressekontakt
    Lucy Turpin Communications
    Sabine Listl
    Prinzregentenstraße 89
    81675 München
    089 41 77 61 16
    neo4j@lucyturpin.com
    http://www.lucyturpin.de

    Bildquelle: Neo4j

  • Neo4j for Graph Data Science: Erstes Enterprise Framework für Data Scientists

    Neo4j for Graph Data Science: Erstes Enterprise Framework für Data Scientists

    Unternehmen sind erstmals in der Lage auf einfache Art und Weise bisher unlösbare Fragen mit Datenanalytik und Machine Learning zu beantworten

    München, 8. April 2020 – Neo4j, führender Anbieter von Graphtechnologie, kündigt die Verfügbarkeit von Neo4j for Graph Data Science an. Das Framework verbindet native Graphanalytik und Graphdatenbank mit skalierbaren Graph-Algorithmen und anschaulicher Visualisierung. Damit erhalten Data Scientists ein zuverlässiges und benutzerfreundliches Toolset für die Analyse vernetzter Daten und das Erstellen von Machine Learning-Modellen.

    Mit Neo4j for Graph Data Science können Anwender aussagekräftige, aber bislang weitgehend ungenutzte Beziehungen und Netzwerkstrukturen für ihre Analysen heranziehen. Anwendungsfälle reichen von der eindeutigen Nachverfolgung von Webseiten-Besuchern über mehrere Plattformen und Touchpoints hinweg bis zur Betrugsaufdeckung auf Grund verdächtiger Datenmuster oder der Erforschung von Krankheiten und ihren Behandlungsmöglichkeiten (z. B. Projekt COVID*Graph).

    Das Framework bietet Data Scientists eine leistungsstarke und praxistaugliche Arbeitsumgebung: Die native und persistente Modellierung ermöglicht die flexible Projektion von In-Memory-Graphen. Dank des Visualisierungstools Neo4j Bloom können die Ergebnisse anschaulich dargestellt und geteilt werden, wodurch Lösungen schneller entwickelt werden können. Skalierbare Graph-Algorithmen lassen sich zudem in reproduzierbare Abläufe integrieren und erlauben datenbasierte Vorhersagen. Dazu gehören beispielsweise Community Detection- und Similarity Algorithmen zur Identifizierung von Clustern und Nearest-Neighbor-Heuristiken, Centrality Algorithmen zur Identifizierung von Influencern sowie Pathfinding und Link Prediction Algorithmen für topologische Mustererkennung.

    Die wichtigsten Features im Überblick
    – Optimierte, parallele Algorithmen zur Analyse über mehrere Milliarden Knoten und Kanten
    – Bessere Datenintegration für schnellere Modellversuche (z. B. deterministisches Seeding)
    – Ein parallel erstellter skalierbarer In-Memory-Graph zur flexiblen Anpassung und Projektion der zugrundeliegenden Graphdaten
    – Veränderbarer In-Memory-Graph zur Überlagerung von Ergebnissen von Analyseschritten
    – Benutzerfreundlichkeit mit logischem Speichermanagement, intuitiver API und umfangreicher Dokumentation und Beispielen
    – Native Integration mit der Neo4j Graphdatenbank liefert maximale Leistung für Analysen und kompakte Speicherung
    – Explorative Visualisierung des Graphen sowie der Algorithmen-Ergebnisse für bessere Zusammenarbeit von Data Scientists, Entwicklern und Entscheidern

    „Die Annahme, dass mehr Daten die Genauigkeit erhöhen und False-Positive-Ergebnisse reduzieren, ist in der Datenanalyse ein weit verbreiteter Irrtum“, erklärt Alicia Frame, Lead Product Manager und Data Scientist bei Neo4j. „In Wirklichkeit übersehen viele datenwissenschaftliche Modelle die für Vorhersagen aussagekräftigsten Elemente innerhalb der Daten: ihre Verbindungen und Strukturen. Neo4j for Graph Data Science wurde genau deshalb konzipiert, um mit Hilfe der zugrundeliegenden Datenbeziehungen die Vorhersagegenauigkeit von Machine Learning-Modellen zu optimieren und bisher offene Fragen der Datenanalytik zu beantworten.“

    „Die Bereitstellung relevanter Inhalte für unsere registrierten Online-Nutzer sowie andere Besucher, ist für unser Geschäft von entscheidender Bedeutung“, erklärt Ben Squire, Senior Data Scientist bei Meredith Corporation. Das US-amerikanische Medienunternehmen erreicht mit seinen Publikationen jeden Monat 190 Millionen Konsumenten – sowohl über TV und Print als auch digital, per Mobilfunk oder Video. „Wir verwenden die Graph-Algorithmen in Neo4j, um Milliarden von Seitenaufrufen in Millionen von pseudonymisierten Profilen umzuwandeln. Statt ‚irrelevante Werbung‘ anzubieten, verstehen wir unsere Kunden jetzt besser, was sich in signifikanten Umsatzgewinnen und höherer Kundenzufriedenheit äußert.“

    Anwendungsfall Betrugsermittlungen
    Die Betrugsaufdeckung (z. B. Identitätsdiebstahl, Betrugsringe, Steuerhinterziehung) betrifft viele verschiedene Branchen, darunter Finanzdienstleister, Versicherungen und staatliche Behörden. Selbst die kleinste Präventivmaßnahme kann zu Einsparungen in Millionenhöhe führen. Neo4j for Graph Data Science unterstützt Ermittler dabei, schrittweise ihre Betrugsbekämpfung zu verbessern, ohne bestehende Machine Learning-Pipelines zu verändern. Das folgende Beispiel verdeutlicht den Einsatz von Neo4j for Graph Data Science im Rahmen der Betrugsaufdeckung:

    1. Ein Data Scientist ist in der Lage verdächtige Gruppen von Transaktionen mit Community-Detection-Algorithmen (z. B. Connected Components) zu ermitteln.
    2. Als nächstes werden mit den Graph-Algorithmen Betweenness Centrality oder PageRank verborgene Strukturen aufgedeckt, wie z.B. Konten, die im Mittelpunkt ungewöhnlich transitiver Transaktionen stehen.
    3. Ein Analyst kann diese Cluster anschließend mit Neo4j Bloom auf intuitive Weise untersuchen und Ergebnisse mit Betrugsexperten teilen, um Merkmale für kriminelles Verhalten abzuleiten.
    4. „Was-wäre-wenn“-Analysen oder mehrere aneinander gekoppelte Graph-Algorithmen können zusammen im variablen In-Memory-Workspace ausgeführt werden, wodurch die Struktur der Graphen flexibel angepasst wird.
    5. Ist die Abfolge der Algorithmen einmal validiert, kann sie für Machine-Learning-Modelle verwendet werden, um proaktiv und automatisiert Betrug zu verhindern und nicht nur aufzudecken.

    Weitere Informationen zu Neo4j for Graph Data Science finden Sie auf der Neo4j Website sowie im Blog. Registrieren Sie sich im Rahmen des ersten Online-Events von Neo4j Connections für Vorträge und Demos rund zu Graph Data Science am 28. April.

    Über Neo4j:
    Neo4j ist führender Anbieter für Graphtechnologie, die Unternehmen wie Airbus, Comcast, eBay, NASA, UBS, Walmart entscheidende Innovationen und Wettbewerbsvorteile bietet. Tausende von Community- Projekten sowie mehr als 400 Kunden erschließen vernetzte Daten mit Hilfe von Neo4j, um Zusammenhänge zwischen Menschen, Prozessen, Standorten und Systemen aufzudecken. Der Fokus auf Datenbeziehungen ermöglicht es Anwendungen, die mit Neo4j entwickelt wurden, die Herausforderungen vernetzter Daten zu meistern – von künstlicher Intelligenz, über Betrugserkennung und Echtzeit-Empfehlungen bis hin zum Stammdatenmanagement. Weitere Informationen unter Neo4j.com und @Neo4j.

    Firmenkontakt
    Neo4j
    Birgit Fuchs-Laine
    Prinzregentenstraße 89
    81675 München
    089 41 77 61 13
    neo4j@lucyturpin.com
    http://www.neo4j.com

    Pressekontakt
    Lucy Turpin Communications
    Birgit Fuchs-Laine
    Prinzregentenstraße 89
    81675 München
    089 41 77 61 13
    neo4j@lucyturpin.com
    http://www.lucyturpin.de

    Bildquelle: Neo4j